Tetrahedron Letters 50 (2009) 2740–2743

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of planar-chiral bridged bipyridines and terpyridines by metal-mediated coupling reactions of pyridinophanes

Nobuhiro Kanomata ^{a,}*,†, Jun Suzuki ^b, Hironobu Kubota ^b, Kiichiro Nishimura ^a, Terumichi Enomoto ^b

aDepartment of Chemistry and Biochemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan b Department of Applied Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan

article info

Article history: Received 2 February 2009 Revised 11 March 2009 Accepted 13 March 2009 Available online 18 March 2009

Dedicated to Professor Philip E. Eaton on the occasion of his 72nd birthday

ABSTRACT

We have accomplished efficient synthesis of planar-chiral bridged 2,2'-bipyridine (S) -6, C_2 -symmetric bipyridinophane (S, S) -7, bridged 2,2':6',2"-terpyridines (S) -11, and C_2 -symmetric terpyridine (S, S) -12 by metal-mediated biaryl cross-coupling or homo-coupling reactions of the corresponding 6 halo[10](2,5)pyridinophanes. Stille-type and Negishi cross-coupling reactions are particularly useful for the syntheses of 6, 11, and 12. On the other hand, nickel-mediated homo-coupling reaction worked best for achieving the synthesis of structurally unique bipyridinophane 7.

- 2009 Elsevier Ltd. All rights reserved.

Many different types of chiral ligands have been developed for catalytic asymmetric reactions and, of these, optically active 2,2'bipyridines and 2,2':6',2"-terpyridines have received considerable attention.^{1–5} Most of these bipyridines are based on central- or axial-chirality and only limited examples are known of planar-chiral bipyridines. Although Vögtle and co-workers synthesized 13-pyridyl[2](1,4)benzeno[2](2,5)pyridinophane and 2-pyridyl[2]-(1,4) benzeno[2](5,8)quinolinophane, planar-chiral bipyridine and pyridylquinoline incorporating [2,2]parapyridinophane and quinolinophane skeletons,^{6,7} yields of those racemic molecules are not satisfactory (23% and 36%, respectively) in the final pyridine-forming steps. Recently, Fu et al. reported the reductive coupling of ferrocene-type pyridine derivative for synthesizing racemic planar-chiral bipyridine with $C₂$ -symmetry and also demonstrated effectiveness of the ligand in Cu(I)-catalyzed asymmetric cyclopropanation.^{[8](#page-3-0)} However, both Vögtle's and Fu's methods require resolution of their racemic bipyridines by chiral HPLC and efficiency of the resolution has not been described in literature.

We have previously reported new synthetic routes to bridged nicotinates and benzoates, [n]parapyridinophane ($n = 8-14$)^{[9](#page-3-0)} and [n]paracyclophane ($n = 8-12$)¹⁰ derivatives, and we have also verified that crystallization-induced asymmetric transformation is practically useful for supplying an enantiomerically pure form of planar-chiral nicotinate (S)-**1.**^{[11,12](#page-3-0)} We have also demonstrated that the bridged ester is a promising planar-chiral building block and that bridged NADH analogs derived from (S)-1 effected highly enantioselective reduction in biomimetic systems.^{9a} In recent years, there have been developed palladium-catalyzed biaryl cross-coupling reactions and organic chlorides and more reactive bromides/iodides are now important synthetic intermediates for target biaryls.[13](#page-3-0) Here we describe efficient synthesis of planar-chiral bridged 2,2'-bipyridines and unknown bridged 2,2':6',2"-terpyridines of cyclophane type by metal-mediated cross- and homo-coupling reactions of halogen-substituted bridged nicotinates having a parapyridinophane skeleton with several metal pyridine reagents.

Bridged halonicotinates (S) -3-5 were obtained from (S) -1 via Noxide (S) -2 (Scheme 1). The reaction with excess POCl₃ effected highly regioselective chlorination of (S) -2 to give 6-chloropyridine,

Scheme 1. Synthesis of 6-halo[10](2,5)pyridinophanes, (S)-3-5.

^{*} Corresponding author. Tel.: +81 5286 3193; fax: +81 3 5286 3487.

E-mail address: kanomata@waseda.jp (N. Kanomata).

⁻ N.K. used to be a faculty member of Meiji University (1999–2005).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.03.095

Table 1 Biaryl-coupling reactions for synthesis of (S) -6

 a In the presence of CuI (0.2 equiv) and CsF (2 equiv).

b 0.3 M solution.

(S)-3, in 75% yield.^{[14](#page-3-0)} Further transhalogenation with TMSBr and TMSI resulted in the desired bromide (S) -4 and iodide (S) - 5^{15} 5^{15} 5^{15} in excellent yields. The halogen/halogen displacement from (S)-3 to (S) -5 exhibited outstanding efficiency as compared to the similar conversion from 2-chloropyridine to 2-iodopyridine (49–72% yields)^{[16](#page-3-0)} according to an electron-withdrawing group at C-3 accelerating the substitutions at C-6. It is important to note here that these transhalogenations took place without losing their planar chirality.

Table 1 summarizes biaryl-coupling reactions for synthesis of (S)-6. We have initially examined Stille cross-coupling of 3-5 with 2-(tri-n-butylstannyl)pyridine. Though these reactions afforded bridged 2,2'-bipyridine **6** in poor to moderate yields (20–40%) (entries 1–3), enantiomeric excess of the optically active bipyridine dropped down remarkably from 99% ee to 28% ee during the course of reaction at high temperature in refluxing pyridine (entry 2). On the other hand, Baldwin's method 17 allows us to carry out the similar reactions at lower temperatures: Pd(0)- and CuI-catalyzed cross-coupling of the iodide (S)-5 proceeded much efficiently in the presence of CsF at 50 °C to give the desired bipyridine (S) -6^{[18](#page-3-0)} in 60% yield with 99% ee (entry 4). Similarly, Negishi coupling with 2-pyridylzinc bromide worked even better to provide the compound 6 in up to 68% yield (entries 6–9). The milder conditions are compatible with the transformation of such planar-chiral molecules.

More exciting results were obtained by Ni(0)-mediated homo-coupling reactions^{[19](#page-3-0)} of (S)-3-5, giving C_2 -symmetric bridged bipyridine (S,S)- 7^{20} 7^{20} 7^{20} (Table 2). Despite the fact that chloride (S)-3

Table 2

Ni-mediated homo-coupling reactions for synthesis of (S,S)-7

achieved moderate yield (entry 1), both bromide (S)-4 and iodide (S)-5 were good precursors and the maximum yield reached 78% (entry 2). Readily accessible $NiCl₂/PPh₃$ works well rather than air sensitive Ni(PPh₃)₄. The compound (S,S)-7 was identified by 1 ^H NMR, 13 C NMR, and mass spectral data, all of which agree with the proposed structure of the bipyridinophane with C_2 -symmetry.

Finally, we synthesized bridged terpyridines, (S) -11 and (S, S) -**12**, from (S) -4 and (S) -8, the latter of which was derived from 4 in a few steps as illustrated in Scheme 2. The modified Stille cross-coupling with 2-(pyridin-2-yl)-6-(trimethylstannyl)pyridine $(9)^{21}$ $(9)^{21}$ $(9)^{21}$ resulted in the formation of the desired 2,2':6',2"-terpyridine derivative (S)-11a, b^{22} b^{22} b^{22} in 61% and 54% yields, respectively. To obtain C_2 -symmetric 2,2':6',2"-terpyridine, we initially carried out the reaction of (S)-4 with 2,6-bis(trimethylstannyl)pyridine $(10)^{23}$ $(10)^{23}$ $(10)^{23}$ in such a way that bromide 4 was added dropwise to a heated solution of 10 to give 20% yield of the desired product (S,S) -12a^{[24](#page-3-0)} without a loss of planar-chirality (>99% ee). Since 2,6bis(trimethylstannyl)pyridine is decomposed slowly under the

Scheme 2. Synthesis of planar-chiral terpyridines, 11a,b and 12a,b.

Figure 1. X-ray crystallographic structure of (S,S) -7.

reaction conditions, we employed a modified experimental protocol: bisstannylpyridine 10 was added dropwise to a solution of (S) -4 instead and the yield of (S,S)-12a significantly increased to 40%. Similarly, double Stille-coupling of (S)-8 also proceeded well to afford (S, S) -**12b**^{[24](#page-3-0)} in 49% yield.

X-ray crystallographic structure of unique (S,S)-7 is shown in Figure $1.^{25}$ $1.^{25}$ $1.^{25}$ The two pyridine rings of bipyridinophane moieties were found to have a dihedral angle of N–C–C–N with ca. +60 degrees, which is in good contrast to simple 2,2'-bipyridyl aligned in the same plane. This is ascribed to the characteristic bipyridinophane skeletons whose ansa-bridges are sterically demanding at C-5 and C-5' vicinity to have the two pyridine rings twisted around the C–C bond of the bipyridyl unit. Although some distorted bipyridines are not suitable as metal ligands, zinc complexes (S)-13 and (S) -14^{[26](#page-3-0)} were obtained when the planar-chiral bipyridines (S) -6 and (S,S)-7 reacted with zinc chloride. The formation of the complexes was determined by the ¹H NMR spectra and some selective data are listed in Figure 2. The data exhibited (1) characteristic down-field shifts were observed in their aromatic region and also in terminal oligomethylene protons ($\Delta\delta_{\text{arom}}$ = ca. 0.3 and $\Delta\delta$ _{CH2} = ca. 0.4–0.6 ppm, respectively); (2) the $\Delta\delta$ values are similar to each other and, therefore, the two complexes are at a comparable level of thermodynamic stability; and (3) more sterically demanding (S, S) -14 is apparently C_2 -symmetric.

It is noteworthy that (S, S) -14 is quite stable complex to be stored in solid state and is also stable enough in chloroform solution. However, the complex seems to be kinetically less stable and decomplexation was observed during chromatography on

Figure 2. Representative chemical shifts in ¹H NMR spectra of (S)-6, (S,S)-7 and their zinc complexes 13,14.

Figure 3. CD spectra of (S) -6, (S,S) -7, and (S,S) -12a.

Figure 4. ¹H NMR chemical shifts for central pyridine rings of (S) -11a and (S,S) -12a $(E = CO₂Me)$.

silica gel, filtration through Celite, extraction with water, or even stirring in acetonitrile.

Figure 3 illustrates CD spectra of bipyridines (S) -6 and (S, S) -7 and terpyridine (S, S) -12a; the two bipyridines showed nearly overlapping line shapes in terms of Cotton effects and their intensities, and the terpyridine exhibited an amplified but still similar shape as compared to the bipyridines. This observation suggests that their pyridine cores are aligned with similar non-planar orientation. A typical up-field shift of a central aromatic proton for (S,S) -12a (δ 8.19 ppm) also supports the non-planar structure where its H_a protons are located in a shielding region of the neighboring pyridine (Fig. 4). One of the corresponding protons for (S) -11a exhibits a standard chemical shift as well as that for simple terpyridine (δ 8.45 ppm).

Acknowledgment

The authors greatly acknowledge financial support by JSPS Grant-in-Aid for Scientific Research (C) (19550112).

References and notes

- 1. For recent review articles regarding bipyridines and terpyridines, see: (a) Hapke, M.; Brandtb, L.; Lützen, A. Chem. Soc. Rev. 2008, 37, 2782–2797; (b) Kwong, H.-L.; Yeung, H.-L.; Yeung, C.-T.; Lee, W.-S.; Lee, C.-S.; Wong, W.-L. Coord. Chem. Rev. 2007, 251, 2188–2222; (c) Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129–3170.
- 2. (a) Hrdina, R.; Dracinsky, M.; Valterova, I.; Hodacova, J.; Cisarova, I.; Kotora, M. Adv. Synth. Catal. 2008, 350, 1449–1456; (b) Goswami, A.; Ohtaki, K.; Kase, K.; Ito, T.; Okamoto, S. Adv. Synth. Catal. 2008, 350, 143–152; (c) Lawecka, J.; Bujnicki, B.; Drabowicz, J.; Rykowski, A. Tetrahedron Lett. 2008, 49, 719-722; (d) Ricardo, C.; Pintauer, T. J. Org. Chem. 2007, 692, 5165–5172.
- 3. For references of asymmetric reactions with bipyridines: (a) Malkov, A. V.; Bell, M.; Orsini, M.; Pernazza, D.; Massa, A.; Herrmann, P.; Meghani, P.; Kočovsky, P.

J. Org. Chem. 2003, 68, 9659–9668; (b) Lyle, M. P. L.; Wilson, P. D. Org. Lett. 2004, 6, 855–857; (c) Yeung, C.-T.; Teng, P.-F.; Yeung, H.-L.; Wong, W.-T.; Kwong, H.- L. Org. Biomol. Chem. 2007, 5, 3859–3864; (d) Chen, Y.-J.; Lin, R.-X.; Chen, C. Tetrahedron: Asymmetry 2004, 15, 3561–3571.

- 4. For recent articles covering terpyridines, see: Refs. 1b,c,2b,3b,c and references cited therein.
- 5. For asymmetric reactions with terpyridine ligands: (a) Wong, W.-L.; Lee, C.-S.; Leung, H.-K.; Kwong, H.-L. Org. Biomol. Chem. 2004, 2, 1967–1969; (b) Wong, W.-L.; Lee, W.-S.; Kwong, H.-L. Tetrahedron: Asymmetry 2002, 13, 1485–1492; (c) Kwong, H.-L.; Wong, W.-L.; Lee, W.-S.; Cheng, L.-S.; Wong, W.-T.
Tetrahedron: Asymmetry **2001**, 12, 2683–2694; (d) Kwong, H.-L.; Lee, W.-S. Tetrahedron: Asymmetry 2000, 11, 2299–2308; (e) Chelucci, G.; Saba, A.; Soccolini, F.; Vignola, D. J. Mol. Catal. A: Chem. 2002, 178, 27–33; (f) Chelucci, G.; Saba, A.; Vignola, D.; Solinas, C. Tetrahedron 2001, 57, 1099–1104.
- 6. Wörsdörfer, U.; Vögtle, F.; Nieger, M.; Waletzke, M.; Grimme, S.; Glorius, F.; Pfaltz, A. Synthesis 1999, 597–602.
- 7. Wörsdörfer, U.; Vögtle, F. J. Prakt. Chem. 1999, 445–448.
8. Rios R.: Liang G.: Lo. M. M.-C.: Fu. G. C. J. Chem. Soc.
- Rios, R.; Liang, G.; Lo, M. M.-C.; Fu, G. C. J. Chem. Soc., Chem. Commun. 2000, 377–378.
- 9. (a) Kanomata, N.; Nakata, T. J. Am. Chem. Soc. 2000, 122, 4563–4568; Kanomata, N.; Nakata, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 1207–1211; (b) Kanomata, N.; Yamada, S.; Ohhama, T.; Fusano, A.; Ochiai, Y.; Oikawa, J.; Yamaguchi, M.; Sudo, F. Tetrahedron 2006, 62, 4128–4138.
- 10. Ueda, T.; Kanomata, N.; Machida, H. Org. Lett. 2005, 7, 2365–2368.
- 11. (a) Kanomata, N.; Ochiai, Y. Tetrahedron Lett. 2001, 42, 1045–1048; (b) Kanomata, N.; Maruyama, S.; Tomono, K.; Anada, S. Tetrahedron Lett. 2003, 44, 3599–3603.
- 12. Kanomata, N.; Mishima, G.; Onozato, J. Tetrahedron Lett. 2009, 50, 409–412.
- 13. Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–4211.
- 14. Jung, J.-C.; Jung, Y.-J.; Park, O.-S. Synth. Commun. 2001, 31, 2507–2511.
- 15. The corresponding carboxylic acid resulted from hydrolysis with TMSI in ca. 40% ratio.
- 16. Schlosser, M.; Cottet, F. Eur. J. Org. Chem. 2002, 4181–4184.
- 17. Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int. Ed. 2004, 43, 1132–1136. 18. (S)-6: white solid; mp 70.1-72.1 °C; ¹H NMR (500.16 MHz, CDCl₃) δ 0.49 (m, 1H), 0.57–1.00 (m, 9H), 1.16 (m, 1H), 1.20–1.32 (m, 2H), 1.41 (m, 1H), 1.61 (m, 1H), 1.91 (m, 1H), 2.64 (ddd, J = 12.8, 9.2, 4.0 Hz, 1H), 2.91 (ddd, J = 12.8, 9.2, 4.0 Hz, 1H), 3.64 (ddd, J = 12.0, 5.8, 4.0 Hz, 1H), 3.84 (ddd, J = 12.0, 5.8, 4.0 Hz, 1H), 3.95 (s, 3H), 7.33 (ddd, J = 7.6, 4.0, 1.2 Hz, 1H), 7.88 (td, J = 7.6, 1.6 Hz, 1H), 8.09 (d, J = 7.6 Hz, 1H), 8.15 (s, 1H), 8.66 (dd, J = 4.0, 1.2 Hz, 1H); ¹³C NMR (125.77 MHz, CDCl3) δ 24.6, 26.0, 26.41, 26.47, 27.34, 27.37, 27.5, 27.8, 31.1, 35.7, 53.4, 123.24, 124.5, 124.7, 133.66, 136.9, 142.0, 148.5, 157.8, 158.3, 160.3, 167.1; CD (CH₃CN) λ_{ext} = 296 ($\delta \epsilon$ = +12.5), 270 (+4.1), 246 (+26.7). HRMS (FAB+) m/z : calcd for $C_{22}H_{29}N_2O_2$ [M+H⁺] 353.2229, found 353.2228.
- 19. Tiecco, M.; Testaferri, L.; Tingoli,M.; Chianelli, D.; Montanucci, M. Synthesis 1984, 736–738; Ling, R.; Yoshida, M.; Mariano, P. S. J. Org. Chem. 1996, 61, 4439–4449.
- 20. (S,S)-7: white solid; mp 149.9–151.1 °C (from MeOH); ¹H NMR (399.78 MHz, CDCl₃) δ 0.38–0.52 (m, 4H), 0.60 (m, 2H), 0.74–1.13 (m, 16H), 1.30 (m, 2H), 1.45–1.68 (m, 6H), 1.83 (m, 2H), 2.77 (m, 2H), 2.83–2.94 (m, 4H), 3.74 (ddd, J = 12.8, 8.2, 4.1 Hz, 2H), 3.95 (s, 6H), 8.14 (s, 2H); ¹³C NMR (100.53 MHz, CDCl3) d 24.4, 26.0, 26.5, 26.7, 27.4, 27.7, 27.9, 30.7, 35.6, 52.3, 124.2, 133.3, 140.6, 158.5, 159.9, 167.4; CD (CH₃CN) λ_{ext} = 297 ($\Delta \varepsilon$ = +10.3), 271 (+3.2), 247 (+21.5); $[\alpha]_D^{27}$ +288 (c = 0.21 in CHCl₃). HRMS (FAB+) *m*/z: calcd for C₃₄H₄₉N₂O₄ [M+H⁺] 549.3692, found 549.3661.
- 21. Prepared from 2-bromopyridine with 2,6-bisstannylpyridine 10^{23} in the presence of 10 mol % of $Pd(PPh_3)_4$ in refluxing toluene for 20 h. For 9: 60% yield; oil; ¹H NMR (400 MHz, CDCl₃) δ 0.38 (s, 9H), 7.27–7.29 (m, 1H), 7.44– 7.46 (m, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.79-7.81 (m, 1H), 8.25-8.27 (m, 1H), 8.54 $(d, I = 8.0$ Hz, 1H $), 8.66$ (m, 1H $),$
- 22. For (S)-11a: solid; mp 102.7–103.9 °C; ¹H NMR (399.78 MHz, CDCl₃) δ 0.47– 0.51 (m, 1H), 0.66 (m, 1H), 0.73–0.78 (m, 3H), 0.80–0.85 (m, 2H), 1.01–1.19 (m, 3H), 1.22 (m, 1H), 1.39–1.54 (m, 3H), 1.70 (m, 1H), 1.82 (m, 1H), 2.60 (ddd, J = 13.1, 9.2, 4.4 Hz, 1H), 2.80 (ddd, J = 13.1, 9.2, 4.4 Hz, 1H), 3.83–3.91 (m, 2H), 3.97 (s, 3H), 7.32 (m, 1H), 7.82 (dd, J = 7.5, 2.6 Hz, 1H), 8.01 (t, J = 8.0 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 8.18 (s, 1H), 8.44 (d, J = 8.0 Hz, 1H), 8.48 (d, J = 8.0 Hz,
1H), 8.70 (m, 1H); ¹³C NMR (100.53 MHz, CDCl₃) *ŏ* 24.8, 26.2, 26.57, 26.61, 27.3,

27.4, 27.7, 27.9, 31.6, 35.9, 52.3, 120.4, 121.3, 123.7, 124.4, 124,5, 133.6, 136.8, 137.8, 142.1, 149.0, 154.8, 156.0, 157.37, 157.45, 160.2, 167.0. HRMS (FAB+) m/ z: calcd for $C_{27}H_{32}N_3O_2$ [M+H⁺] 430.2489, found 430.2490. For (S)-11b: oil; ¹H NMR (399.78 MHz, CDCl₃) $δ$ 0.49-0.61 (m, 2H), 0.61-0.1.06 (m, 6H), 1.13-1.45 (m, 6H), 1.69 (m 1H), 1.89 (m, 1H), 2.40 (s, 3H), 2.57 (ddd, J = 12.1, 9.2, 4.4 Hz, 1H), 2.86 (ddd, J = 12.1, 9.2, 4.4 Hz, 1H), 3.09 (ddd, J = 12.1, 9.2, 4.4 Hz, 1H), 3.79 $(dddJ = 12.1, 9.2, 4.4 Hz, 1H$), 7.30 (m, 1H), 7.39 (s, 1H), 7.80 (dd, J = 7.5, 2.6 Hz, 1H), 7.96 (t, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 8.0 Hz, 1H), 8.46
(d, J = 8.0 Hz, 1H), 8.69 (m, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.4, 24.8 25.7, 26.50, 26.55, 26.6, 27.5, 27.6, 27.9, 31.5, 34.0, 119.6, 121.2, 123.6, 124.4, 130.6, 133.7, 136.8, 137.8, 141.3, 149.0, 153.3, 154.6, 156.4, 157.3, 158.8. HRMS (FAB+) m/z : calcd for C₂₆H₃₂N₃ [M+H⁺] 386.2591, found 386.2598.

- 23. Yamamoto, Y.; Yanagi, A. Chem. Pharm. Bull. Jpn. 1982, 30, 1731–1737.
- 24. For (S, S) -12a: white solid; mp 168.6-169.1 °C (from MeOH); ¹H NMR $(500.16 \text{ MHz}, \text{CDCl}_3) \delta 0.49 \text{ (m, 2H)}, 0.61 \text{ (m, 2H)}, 0.63-0.78 \text{ (m, 8H)}, 0.80-0.01 \delta 0.001 \delta$ 0.85 (m, 4H), 1.23–1.32 (m, 5H), 1.23–1.46 (m, 5H), 1.58–1.72 (m, 4H), 1.92 (m, 2H), 2.48 (ddd, J = 13.7, 9.8, 4.4 Hz, 2H), 2.92 (ddd, J = 13.7, 9.8, 4.4 Hz, 2H), 3.66 $(ddd, J = 14.6, 10.2, 4.4 Hz, 2H), 3.86 (ddd, J = 10.2, 6.4, 3.9 Hz, 2H), 3.95 (s, 6H),$ 8.05 (t, $J = 8.0$ Hz, 1H), 8.12 (s, 2H), 8.19 (d, $J = 8.0$ Hz, 2H); ¹³C NMR (125.77 MHz, CDCl3) d 24.7, 26.2, 26.5, 26.6, 27.2, 27.4, 27.7, 27.9, 31.3, 35.9, 52.3, 124.1, 124.3, 134.0, 137.8, 142.0, 157.0, 157.4, 160.0, 167.0; CD (CH₃CN) λ_{ext} = 300.1 ($\Delta \epsilon$ = +23.5), 266.9 (+9.7), 245.4 (+58.0), 219.0 (-46.3); $[\alpha]_D = +405.8$ (c = 0.535 in CHCl₃). HRMS (FAB+) m/z: calcd for C₃₉H₅₂N₃O₄ $[M+H⁺]$ 626.3958, found 626.3981. For (S, S) -12b: white solid; mp 183.1-183.6 °C (from MeOH); ¹H NMR (500.16 MHz, CDCl₃) δ 0.48-0.91 (m, 20H), 1.10–1.31 (m, 6H), 1.37 (m, 2H), 1.70 (m, 2H), 1.92 (m, 2H), 2.30–2.42 (m, 8H), 2.87 (ddd, $J = 13.7, 9.8, 4.4$ Hz, $2H$), 3.11 (ddd, $J = 14.6, 10.2, 4.4$ Hz, $2H$), 3.60 $(ddd, J = 10.2, 6.4, 3.9 Hz, 2H$), 7.32 (s, 2H), 7.93 (t, $J = 8.0 Hz, 1H$), 8.03 (d, $J = 8.0$ Hz, 2H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.5, 24.6, 25.8, 26.53, 26.57, 26.61, 27.59, 27.63, 27.9, 31.2, 34.0, 123.1, 130.3, 134.1, 137.6, 141.3, 153.8, 157.0, 158.1; CD (CH₃CN) λ_{ext} = 283.1 ($\Delta \epsilon$ = +21.4), 260.7 (-2.2), 239.4 (+29.9), 209.7 (-27.8); $[\alpha]_D = +140.9$ (c = 0.565 in CHCl₃). HRMS (FAB+) m/z: calcd for $C_{37}H_{51}N_3$ [M+H⁺] 538.4161, found 538.4161.
- 25. X-ray crystal data for (S,S)-7: $C_{34}H_{48}O_4N_2$, $M_w = 548.76$, orthorhombic, space group $P2_12_12_1$ (No. 19), colorless, prism, dimensions $0.44 \times 0.41 \times 0.26$ mm³ μ (Mok α) = 0.784 cm⁻¹, $a = 8.4349(3)$ Å, $b = 18.5330(5)$ Å, $c = 19.2294(6)$ Å $V = 3006.02(16)$ Å³, $T = -100 \pm 1$ °C, $Z = 4$, $D_c = 1.212$ g/cm³. Of the 29566 reflections that were collected, 6857 were unique $(R_{int} = 0.050)$. R_1 and wR₂ are 0.0358 and 0.0675, respectively [*I* > 2.00s(*I*)]. Crystallographic data (excluding structure factors) for the structure of (S, S) -7 have been deposited with the Cambridge Crystallographic Data Center as supplementary publication No. CCDC 722776. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).
- 26. For (S)-13: white solid; mp 289.2-291.0 °C; ¹H NMR (399.78 MHz, CDCl₃) δ 0.28–0.33 (m, 2H), 0.58–0.66 (m, 1H), 0.74–0.91 (m, 4H), 0.91–1.01 (m, 1H), 1.01–1.19 (m, 3H), 1.34–1.47 (m, 1H), 1.62–1.76 (m, 2H), 1.83–1.91 (m, 1H), 2.04–2.16 (m, 1H), 2.58 (ddd, $J = 13.7$, 8.2, 3.2 Hz, 1H), 3.16 (ddd, $J = 13.3$, 8.7, 4.1 Hz, 1H), 3.53 (ddd, J = 13.7, 8.2, 3.2 Hz, 1H), 4.02 (s, 3H), 4.22 (ddd, J = 13.7, 8.2, 3.2 Hz, 1H), 7.81 (td, J = 8.2, 2.0 Hz, 1H), 8.25 (td, J = 8.2, 2.0 Hz, 1H), 8.34 (dd, $J = 8.2$, 2.0 Hz, 1H), 8.53 (s, 1H), 8.92 (dd, $J = 8.2$, 2.0 Hz, 1H); ¹³C NMR $(100.53 \text{ MHz}, \text{CDCl}_3)$ δ 24.65, 25.9, 26.1, 26.25, 26.3, 27.8, 30.2, 32.94, 37.25 53.2, 126.7, 127.5, 128.5, 136.1, 141.4, 146.25, 148.66, 149.5, 149.6, 162.2, 164.86. HRMS (FAB+) m/z : calcd for $C_{22}H_{28}CIN_2O_2Zn$ [M-Cl⁻] 451.1125, found 451.1135. For (S,S)-**14**: white solid; mp 266.1-267.3 °C; ¹H NMR (399.65 MHz CDCl₃) δ 0.23–0.42 (m, 4H), 0.62–0.89 (m, 12H), 0.91–1.06 (m, 4H), 1.11 (m, 2H), 1.31 (m, 2H), 1.41–1.52 (m, 4H), 1.64 (m, 2H), 2.17 (m, 2H), 2.66 (ddd, $J = 13.8, 10.7, 3.2$ Hz, 2H), 3.05 (ddd, $J = 13.8, 6.3, 3.4$ Hz, 2H), 3.61 (ddd, $J = 14.1$, 9.3, 3.7 Hz, 2H), 4.02 (s, 6H), 4.09 (ddd, J = 14.1, 7.6, 3.9 Hz, 2H), 8.47 (s, 2H); ¹³C NMR (125.40 MHz, CDCl₃) δ 24.3 (2C), 25.6 (2C), 25.9 (2C), 26.8 (2C), 27.5 (2C), 28.2 (2C), 29.2 (2C), 29.7 (2C), 32.8 (2C), 36.4 (2C), 53.2 (2C), 129.3 (2C), 138.1 (2C), 143.4 (2C), 149.6 (2C), 162.5 (2C), 165.3 (2C); CD (CHCl₃); $\lambda_{ext} = 304$
($\Delta \epsilon$ = +1.6), 282 (8.6), 246 (+35.4); [α_{\parallel}^{27} +303 (c = 0.24 in CHCl₃); MS (FAB+) m/z
(%) 549 (100) [M-ZnCl₂+H⁺]; MS (peaks at 683 [M+H⁺] or 647 [M-Cl⁻] was absent. Anal. calcd for C34H48Cl2N2O4Zn: C, 59.61; H, 7.06; N, 4.09. found: C, 58.22; H, 7.18; N, 3.91.